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The flow between two solid boundary surfaces of revolution and also between two 
rotating co-axial cones, of certain orientable fluids which are unoriented at  rest, 
has been studied. It is found that for sufficiently low velocity gradients the 
fluids behave like Newtonian fluid, while at larger but still very moderate 
velocity gradients the predicted behaviour is similar to that observed in elastico- 
viscous fluids. In the latter case it is shown that the flow of this class of fluids in 
horizontal circles is not possible for the boundary conditions defined above, 
even when the inertia terms are negligible, and that the normal stresses in the 
plane perpendicular to the streamlines are not equal. 

1. Introduction 
Ericksen (1960a, b)  has formulated and developed a theory of anisotropic 

fluids in which the fluid is characterized by having a single preferred direction at 
each point, represented by avector n of variable magnitude. This direction, which 
is governed by the fluid motion, may vary with time throughout the fluid. Physi- 
cally the fluid is pictured as composed of dumb-bell molecules. For the law of 
change of this vector n, Ericksen introduced the equation (Cartesian tensor 
notation is employed) 

where dots denote the material derivative. In equation (1) the left-hand expres- 
sion represents the inertia of the molecules while the vector represents the in- 
trinsic forces. Ericksen assumed that: 

(a) The stress tensor tij and the vector g a t  a particle P at time t are functions 
of p, ni, ki, w ~ , ~ ,  being linear in the variables hi and where p is the mass density 
and vi is the velocity of the fluid. 

(b )  The forms of tij and gi are preserved under all time-dependent proper 
orthogonal transformations. 

(c) The structure represented by n is symmetric with respect to reflexions 
in the planes parallel and perpendicular to n. He obtained the following explicit 
expressions for ti5 and gi: 

tij = (ao+a1dkk+a2dkmnknm+a,Aknk) dij+ (a,+a,dkk+a,dkmnknm+a,Aknk) 

prig = gi, (1) 

x ni n5 + a8 dij + asdiknkn5 -+ alodjknrcni + allni a5 + a12n5 Ai, (2) 

gi = ( P O + P l d k k + ~ 2 d k m n k n m + r B 9 A k n k ) n ~ +  (afl-alO)dijnj+ (a12-all) %- (3) 
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Here a’s and /3’s are functions of p and n2, is the Kronecker delta and 

A ni = n, - wijn5, 

2Gij = vi,i - v*,i. 
(4) 

Ericksen simplified the above equations by making two further assumptions, 
that the fluid be incompressible and that the inertia of the molecules benegligible. 
Equations (2) and (3) then reduce to 

t .  a5 = t . -  5% - -Psi j+ ( A 1 + h 2 d ~ n k n m ) n i n ~ + 2 A , d i 5 + 2 h , ( d i k n k n j + a 5 k n k n , ) ,  ( 5 )  

ni = Oiknk + (a1 + h d k m n k n m )  ni + h d i j n j ,  (6) 

where p is an arbitrary pressure while the A’s and a’s are now essentially functions 
of n2 = nknk, to be determined by experiment, and the overdot denotes the 
material derivative. Since the fluid is assumed incompressible, the equation of 

(7) 
continuity takes the form 

The equations of motion, in the absence of body forces, are 

ti*, 5 = pd,. (8) 

dii = 0. 

Solutions of equations (5)-(8) have been given by Ericksen (1960b, 1962) 
for simple shearing flow and homogeneous flows and by Kaloni (1966) for other 
classical steady flows, which include Poiseuille flow, Couette flow, helical flow, 
and flow through pipes of arbitrary cross-section. In  their analyses of these 
problems both authors have restricted their attention to fluids for which n -+ 0 
when the fluid is at rest. The restriction, besides agreeing with the fact that the 
stress should reduce to hydrostatic pressure when the fluid is at rest or undergoes 
rigid body motions, as is noted by Green (1964), also has a physical inter- 
pretation. In  dilute solutions of high polymers at rest, the long-chain (flexible) 
molecules are supposed to be randomly coiled and, therefore, define no preferred 
direction. In  shear, it  is thought that they stretch out and are partially uncoiled 
so that there is statistically some preferred direction of orientation, In the 
theory proposed by Ericksen this tendency towards alignment is represented 
macroscopically by associating with each particle of the fluid a vector n (of 
variable magnitude) which represents the direction of orientation and whose 
magnitude measures the amount of stretch. 

The present note is concerned with the analysis of the behaviour of this class 
of fluids between two solid boundary surfaces of revolution in relative motion 
about a common vertical axis and also between two rotating coaxial cones, using 
equations (5) and (6) as constitutive equations. Attention is again focused on 
fluids for which n = 0 is a stable solution at  rest. This condition obviously leads 
to the question whether n = 0 (a possible solution) is stable when the fluid is 
in motion or whether there exist other stable solutions for which n + 0 during 
steady motion? In order to explore these possibilities the time-dependent 
equations (6) for n have been solved by linearizing them with respect to small 
perturbations inn  about the assumed steady-state solution. This type of calcula- 
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tion, although not rigorous insofar as complete stability analysis of the solutions 
is concerned (because the velocity field is not perturbed), is thought to give 
qualitatively significant information and has the considerable advantage that it 
reduces the mathematical complexity. In fact, as is noted by Leslie (1964) 
the correct procedure from the point of view of stability analysis would be to 
allow perturbations in the velocity vector also and thus make use of a linearized 
form of equation (8); however, in the situation considered here perturbations 
of velocity would introduce boundary conditions, a difficulty which is avoided 
here when only n is perturbed; n is only subject to initial conditions. 

With these reservations, the analysis has been pursued and it is found that at  
sufficiently low shearing the fluid tends to be unoriented, behaving like a New- 
tonian fluid. However, at moderate velocity gradients, i.e. when they exceed 
slightly their critical values to be defined later in the text, orientation occurs and 
the behaviour shown resembles that predicted for certain other viscoelastic 
fluid models (cf. Oldroyd 1958). In  the latter case our calculations predict that 
in case of laminar flow there is no simple proportionality between the normal 
stress functions in the plane perpendicular to streamlines, a fact which is in 
agreement with the experimental findings of Markovitz & Brown (1962) but 
seems to contradict those of Roberts (1953). 

2. Flow between two rigid boundary surfaces of revolution 
We shall first consider the steady flow of an incompressible orientable fluid 

between two rigid boundaries in relative motion about a common vertical axis 
and examine the possibility of flow in horizontal circles. We refer to cylindrical 
polar co-ordinates ( r ,  19, z ) ,  with the z-axis vertically upward and assume the 
velocity field to bet 

vl = 0,  2r2 = rw(r,z) ,  v3 = 0,  (9) 

which satisfies equation (7). The non-vanishing, physical components of the 
tensors dij and Oij then turn out to be 

a,, = a,, = gy,, = a32 = 4r2, 
- $1, = $21 = (W + &yJ,  8 2 3  = - 8 3 2  = $ 7 8 ,  (10) 

where y1 and yz denote raw/ar and rao/az,  respectively. On using equation (lo), 
the stress components given by (5) reduce to 

t Here the suffices 1, 2 and 3 refer to the r - ,  0- and z-directions. 
33 Fluid Mech. 23 
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Assuming ni = ni(r, z, t ) ,  equations (6) give 

= i(p3 - ) 71 n2 + b 1 - k  p2(71 nl f 7 2  n3) 

= 4@3+ l )  (Ylnl+y2n3) +[pl+p2(Y1”1+Y2n3)nZln2, 

= 4(p3- 1)y2n2f[pl+p2(ylnl+y2n3)n21n3’ 

n 1 9  

Equations (12) can be satisfied by taking ni = 0 (i = 1,2,  3), and in that case 
the theory reduces to that for Newtonian fluids with viscosity h3(0). However, 
as has been discussed by Ericksen (1960b, 1962), such solutions are, in other 
situations, of less significance because of their unstable nature than those with 
n, + 0. It therefore becomes natural to inquire whether in this flow, the con- 
figuration described by n = 0 is stable or unstable and whether there exist other 
stable solutions with n, =/= 0‘1 In order to examine these situations we write 

n, = Ni +mi, (13) 

where the vector N denotes that value of n which corresponds to a possible stable 
steady-state orientation. We now insert the values of ni from equation (13) 
into (12), linearize them with respect to mi, and then determine the stability 
conditions. The assumption that N = 0 is a stable solution when the fluid is at 
rest requires that ,ul(0) < 0. Assuming that this holds, a little calculation shows 
that the solutions of equations ( l2) ,  when the fluid is in motion, will approach 
N = 0 in time, only if 

< -2p1(o)/{p3(o)2- ’}’, (14) 

where p,(O) and ,u3(0) represent their values a t  n2 = 0, y is the positive root of 
the equation 

and where we have assumed that Ipg(0) I > 1 .  

I f  its value exceeds the critical value yc given by 
We notice that condition (14) is satisfied for sufficiently low values of y only. 

rc“ = 4rU21(~)/{&(0) - 111 (16) 

the associated configuration will be unstable. It therefore follows that if (14) 
holds, i.e. if N = 0 is stable when the fluid is in motion, the stress components 
given by (1 1) will reduce to those for Newtonian fluids. On the other hand, if 
the condition (14) fails, N = 0 will represent an unstable configuration. 

Ignoring now those cases when the fluid behaves like a Newtonian viscous 
fluid which is quite simple to  analyse and also when N = 0 is unstable, which 
seems to be of little or no interest, we search out solutions which correspond to  
a stable steady-state N + 0. For this, we linearize equations (12) with respect to 
mi which then become 

am,/at = * ( F 3 -  1)m2yl+ [F1+F2(rlNl+y2N3)N21ml, 

= 4@3- ’) %y2 + @1+F2(rlNl + yZN3) N21 m 3 9  

(17) 

(19) 

= 4@3 + l> (Ylml +Yzm2) + @l+ F2(ylNl + y’ZN3) N21 mZ, ( 18) 
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where the bars over p's denote their values at n2 = N2. Equations (17)-(19) 
form a system of linear differential equations, where no term independent of 
mi occurs. Hence a general solution of this system of equations is 

mi = L, exp { E  + &Y(,E; - 1) i ) t  + k, exp {c - &y(p; - I)*} t 

- 2k3 exp @)/m - I)*, (20) 

where k,, k,, and k3 are functions of the space variables only, to be determined by 
the known initial conditions on the n,'s, and 

6 = [PI +F2(YiNi 'YzN3) N21- (21) 

It therefore follows that the solutions of equations (1 7)-( 19) will approach stable 
values for large times, only if 

(22) 1 F1-k PZ('Y1 Nl + Y2 N3) N Z 1  < '7 

&y < -[F1+FZ(rlNl+'YZN3)N21/~;- '}*, and that 

where again it is assumed that IF31 > 1. 
Assuming that the required assumptions are met, i.e. that we have not in- 

creased the shear rate so greatly as to violate (22) anywhere, we now solve 
equations (12) for stable steady values of ni's by putting ani/at = 0. We may write 

n, = Nsin$cosS, n2 = Ncos$, n3 = Nsin$sinS, (23) 

where tan2 $ = (p3 - l ) / ( p 3  + 1) and tan S = y2/yl. (24) 

On setting the above values of ni's in the first equation of (12) we arrive at  the 

(25) 
equation 

[(p3 - 1) cot $ +p2 N2 sin 2$] y + 2p1 = 0, 

which, on eliminating $ from equation (24), is an equation for determining the 
value of N2 in terms of the motion. 

For real values of the angle $, equation (24) requires that lp31 =- 1, provided 
N 9 0. Assuming that this holds, the same equation then gives two possible 
values of tan $, and, therefore, four possible values of the angle $. On employing 
the values of ni's from equation (23) in the first condition of (22) and combining 
it with equation (25),  we then find that 

(p3-l)ycot$ > 0. (26) 

This condition, for the requirement that N2 =- 0, consistent with the theory, 
then further demands (using equation (25)) that pu3 > 1. With the implication 
of this last restriction on p3, tan $ is then determined uniquely. On employing 
the value of $, so determined, in equation (25), we thus get the real values of 
N2 in terms of the motion. We assume that this equation is soluble. 

To summarize what has been said above, we note from equation (14) that the 
vector N tends to remain zero in slow flows when the velocity gradients are suf- 
ficiently small. This means that molecules tend statistically to take spherical 
shapes and remain coiled until a critical shear rate, defined by (16), is reached. 
At this point they begin to stretch out and are partially uncoiled until the con- 
ditions (22) are violated. In  this range the vector N takes the real values given 

33-2 
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by (23). These are, however, not unique, for if N is a solution, so also is -N, since 
the whole theory is invariant under the substitution of - n for n. [It is possible 
that there may exist other stable solutions: the solutions which have been labelled 
unstable here may in fact be stable. A complete and rigorous analysis would 
require consideration of the velocity perturbations also, as was done by Leslie 
(1 964).] 

So far we have not considered the flow as a whole, but only viewed the behaviour 
of n from a spatially localized point of view. We now develop the analysis further, 
assuming that we have exceeded the critical shear rate given by (16), but not 
to the point of violating (22). The stress components on using (23) then turn out 
to be 

tll = -p + (AlN2 sin2 $ + A y )  cos26, 

433 = -p+ (A,N2sin2++Ay)sin2S, 

tZ3 = (C + Dy) sin 8, 
t13 = (A, N2 sin2 $ -I- A y )  sin 6 cos 6, 

t 2 2  = -p+(A1N2c0s2$+By), 

t i 2  = (C + Dy) cos 6, 

where 

(27) 

2A = N2 sin 2$[h2N2 sin2 $ + 2A4], 2 3  = N2 sin 211. [A, N2 cos2 + + 2A,], 

2C = A,N2sin2$, 40 = 4(A3+h,N2)+A2N4sin22+ 

It is convenient to introduce three material functions defined by 
and N2 is given by equation (25). 

(C + Dy)  E ~ ( y ) ,  (y1N2 sin2 $ + A y )  Pi(y), (A1N2 c0s2 II. +By) 3 Pz(y), (29) 

where a(y) and P(y)’s are functions of y only (a(y)  being an odd and the P(y)’s 
being even functions) as is evident from the above equations, and whose proper- 
ties have been discussed earlier (Kaloni 1965). a(y)/y is the ‘shear dependent 
viscosity’ and pl(y) and Pz(y) are the ‘normal stress difference functions’. 

On employing the above values of the stress components, the equations of 
motion (S), transformed into cylindrical polar form, in which the stress com- 
ponents are functions of r and x only, take the form 

where a(?) and the P(y)’s have the values given by (29). 
Equation (31) is the differential equation governingw(r, x )  alongwith the known 

prescribed boundary conditions. It is a similar differential equation to that 
obtained for the velocity of unrectilinear flow of the class of fluids which are 
characterized by a single variable coefficient of viscosity ~ ( y )  = a(y),/y. In a par- 
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ticular case when cc(y)/y = const., i.e. when the viscosity of the fluid is constant, 
this equation reduces to the corresponding equation for a Newtonian fluid. 
Equations (30) and (32), however, lead to an additional condition on the velocity 
rw(r, z) ,  which must be satisfied if steady motion in horizontal circles of this class 
of fluids i s  to be possible. Eliminating p between these equations, we obtain the 
condition for consistency as 

Only in the very special case, when w is a function of r only is the condition (33) 
automatically satisfied; but, in general, i t  imposes a restriction on the steady 
flows in horizontal circles which are physically possible. If the fluid is assumed 
to be so highly viscous that inertia terms in the equation of motion are negligible, 
then condition (33), in general, requires that p1 = p2 = 0. It therefore follows 
that for fluids in which the material functions A,, A, and A, all vanish, no restric- 
tions are imposed on the velocity pattern, with inertia terms omitted. These 
conclusions are somewhat similar to those noted by Oldroyd (1958) in the case 
of certain ideaIized elastico-viscous fluids. In  fact, it is interesting to point out 
that condition (33) goes over to equation (44) of Oldroyd's paper if the material 
functions Pl(y) and P2(y) used here have the following relationship with the vari- 
ous constants involved in the constitutive equation of Oldroyd: 

(34) 
PJr) = - [(A, -PA P(Y) - ( A 2  -P2) 701 Y2,  

P2(Y) = [(A1 +P1) F ( Y )  - ( A 2  +P2) 701 Y 2 .  

3. Flow between two co-axial cones 
We now consider the motion of incompressible orientable fluids contained 

between two co-axial cones of common vertex and vertical axis, which are 
rotating about their common axis with velocities Ql and Q2, respectively. We 
assume the motion of the fluid particles to be steady and in circles confined to 
the planes perpendicular to the axis of cones. Although the present case is a 
special case of $2, we feel it convenient to treat it independently. Referred to 
spherical polar co-ordinate system ( r ,  8,#) we assume a velocity distribution, 
with physical components, of the form? 

vl = 0, v2 = 0, w3 = rw(8) sin 8. (35) 

w =  0, on 8 =  01, W =  a,, on 8=B2,  (36) 

The boundary conditions then take the form 

where O1 and 8, are the semi-vertical angles of the inner and outer cones respec- 
tively. 

The physical, non-vanishing, components of the tensors di j  and Ofj, in this case 
reduce to 

(37) 

t The suffices 1, 2 and 3 now refer to the r-,  0- and #-directions. 
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where now y = (dw/de) sin 0. ( 3 8 )  

On using (37), the physical components of the stress tensor are given by 

The stability criteria for these equations can be analysed on the same lines as 
given in the previous section. We find that conditions (14) to (16) still hold true 
except that now y is given by equation (38). Also the stability conditions for 
N =# 0,  assuming IF3\ > 1, now become 

(41) } 
(F1 +p2yn2n3) < ‘ 9  

7 < -2[pi+Fzyn2%l/(F~- l}’, 

with y now given by (38). The values of the ni’s for steady-state flow, when 
N + 0 represents a stable configuration, turn out to be 

n, = 0,  n2 = N sin $, n3 = N cos $, ( 4 2 )  

where @ is given by (24). On setting these values of ni’s in the second equation of 
(40 ) ,  we again arrive at equation (25 ) ,  with y given by (38), which determines N 2  
in terms of the motion. 

The stress components on using ( 4 2 )  become 

( 4 3 )  

where a(y )  and the P(y)’s are the material functions introduced earlier and y 
is given by (38). 

It is clear from the above equations that the stresses are functions of B only. 
Hence the dynamical equation ( 5 ) ,  on transforming to spherical polar form and 
on employing the above values of the stress components, becomes 

I ‘11 = - P ,  t 2 ,  = - P + A ( Y h  t33 = --P+PZ(Y), 

= a(y), t12 = t,3 = O ,  

- [Pl(y) + P2(-y)l/r = ap/ar - prw2 sin 2& (44) 

( 4 5 )  

(46) 
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Equation (46), on integration, gives 

a( y )  = K cosec2 8, (47) 

where K is a constant to be determined from boundary conditions. As in the 
analysis of the previous section, the first two equations, (44) and (45), lead to an 
additional condition on the function w(O), indicating that it would not be pos- 
sible to maintain the velocity distribution of the form (35). Eliminating p ,  
between these equations we obtain the condition for the steady motion in hori- 
zontal circles as 

pr2w(dw/d8) sin2 O = d[;B,(y) +P2(y)] /d0. 

Only when condition (48) is satisfied, does equation (47) along with the known 
boundary conditions determine a possible steady velocity distribution. We note 
that this condition is satisfied only when each side of (48) is separately equal to 
zero, i.e. when the inertia terms in the equations of motion are zero and when 

(48) 

rm) + Pz(r)l = const- (49) 

It, therefore, follows that for a velocity distribution of the form (35) to hold, a 
necessary condition is that the inertial terms in the equation of motion should be 
negligible. Assuming that this holds true, i.e. if the liquid be highly viscous, 
the second condition, (as), then requires that both y and n2 must be constant. 
This restriction, however, contradicts (47) as well as the basic assumptions of the 
theory. We therefore conclude that the flow of such fluids in horizontal circles, 
under general conditions, is not possible in a wide gap between cones, even if the 
inertial effects are negligible. This conclusion is identical with that observed by 
Oldroyd (1958), Ericksen (1960~)  and Bhatnagar & Rathna (1963) for various 
isotropic theories of visco-elastic fluids. 

4. Comparison with experimental results 
It is of some interest to compare the above results with the experimental 

observations of Roberts (1953) and Markovitz & Brown (1962), which have been 
obtained by shearing some real visco-elastic fluids between a horizontal flat 
plate and a cone of semi-vertical angle very near to &r. If the semi-vertical angles 
of the two cones are sufficiently near to +r, then in equation (46) the second term 

(50) 
vanishes and we get 

a (y )  = const., 

which requires that y = yo, a constant. Roberts, by shearing anumber of colloidal 
and polymer solutions between a horizontal flat plate and a cone of semi-vertical 
angle very near to &r, concluded that the distribution of the normal stresses was 
equivalent to an extra-tension along the streamlines, the normal stresses in any 
plane perpendicular to the streamlines being equal. In  terms of the variables 
defined above, if the above conclusions are thought to be correct, then we must 
have 

tee = tw 

and tw < $+++ tee < $6. (51) 

tw $. tee 4 t # $ 7  

An inspection of the stress distribution (43), reveals that in the present case 

(52) 
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which is in contradiction with the first condition given by (51). The second con- 
dition of (51), however, can be satisfied if it  is assumed that all A's are positive 
definite functions of n2 and therefore of y, and if the angle $, which the preferred 
direction makes with the streamlines, lies between 0" and 45'. In  their experimen- 
tal predictions, Markovitz t% Brown (1962) have, however, obtained results of 
the form (52) which seem to hold for this class of fluids a,lso. Very recently 
Adams & Lodge (1964) have made assumptions similar to (52) for investigating 
the rheological properties of concentrated polymer solutions. These results, 
therefore, lead us to conclude that in visco-elastic fluids, relations of the type (52) 
are acceptable but not of the form (51). 

The author thanks the referees for their valuable comments and suggestions. 
He also feels pleasure in expressing his thanks to Dr G.Bandyopadhyay and 
Prof. B. R. Seth for their valuable advice and encouragement during the course 
of the present work. 
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